Skip to main content

Degree Objectives

in this section

Educational Objectives of the B.S. Program in Mechanical Engineering

Cornell University is a learning community that seeks to serve society by educating the leaders of tomorrow and extending the frontiers of knowledge. The faculty and staff of the Sibley School of Mechanical and Aerospace Engineering, as members of this community, affirm these objectives. Specifically, the Sibley School is committed to excellence and seeks to graduate mechanical engineers who, collectively:

  • assume leadership positions in technology-based industries;
  • conceive, design, and realize useful products, systems, and services, properly respecting economic, environmental, cultural, life safety, and ethical standards or constraints;
  • discover and apply new knowledge, and develop new tools for the practice of engineering;
  • complete programs of graduate and/or professional studies and continue to learn throughout their lives;
  • are valued in their careers, whether for mastery of the disciplines central to mechanical engineering or for the broader analytical or creative abilities fostered by their engineering education; and
  • engage with their communities, profession, and the world.

These Program Educational Objectives describe long-term accomplishments for which we seek to prepare our graduates. Progress toward these objectives is expected to be measurable within three to five years of graduation.

Student Outcomes in Mechanical Engineering

 The Mechanical Engineering curriculum is designed to facilitate the following student outcomes, which collectively prepare graduates to attain the educational objectives of the mechanical engineering program:

Upon completion of their B.S. degree, Mechanical Engineering students will be able to demonstrate:

(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.